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Design and Analysis of the Channel
Waveguide Transformer

PETER H. SIEGEL, STUDENT MEMBER, IEEE, DORN W PETERSON, MEMBER, IEEE, AND
ANTHONY R. KERR, SENIOR MEMBER, IEEE

Abstract —The authors describe an easily fabricated H-plane trans-

former for use in rectangular waveguide carrying the dominant mode. An
approximate theoretical analysis of the structure is presented, and com-
puted results are compared with measurements on transformers at X -band.
Design curves are given for transitions from full to one-half, one-third, and
one-quarter height waveguide. The new transformers have been found
particularly useful for millimeter-wave mixers and multipliers employing
split-block construction. The structure can also be used as a transition from
rectangular to channel waveguide.

I. INTRODUCTION

AVEGUIDE MIXERS and frequency multipliers
often use reduced height waveguide for improved
impedance matching to the nonlinear element. A stepped
or tapered transformer is generally employed between the
full and reduced height sections to minimize the mismatch.
These transformers are especially difficult to fabricate at
millimeter wavelengths where the guide dimensions are
very small. Copper electroforming has been used success-
fully; however this process is time-consuming and usually
requires the production of a disposable mandrel for each
finished piece. ‘
This paper describes a new form of H-plane transformer,
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particularly suitable for use in split-block rectangular
waveguide, which can be made quickly and easily with a
slitting saw or single-point cutting tool. The transformer
has been used successfully in frequency doublers up to 220
GHz, and in mixers operating at 115 GHz.

A physical description of the transformer and detailed
fabrication procedures are given in Section II. Section III
outlines an approximate theoretical analysis for the de-
termination of the reflection coefficient. The accuracy of
the analysis is considered in Section IV where VSWR
measurements of three X-band transformers are compared
with computed values. In Section V, the theory is applied
to two transformer configurations and design curves are
given for transitions from full to one-half, one-third, and
one-quarter height waveguide. Finally, in Section VI, two
modifications are described which increase the bandwidth
of the transformer.

, II. DESCRIPTION OF THE TRANSFORMER
The channel waveguide transformer is shown in Fig. 1. It

is most easily fabricated as a split-block structure in which

the two halves are joined along a plane of zero transverse
current (Fig. 1(d)). A slitting saw or single-point tool is
used to cut the reduced height waveguide completely along
the two blocks (Fig. 1(a)). The full height waveguide and
transition region are then formed by moving the saw to
each side of the centerline, producing a sloping channel in
part of the block (Fig. 1(b) and (c)). The result is a length
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Fig. 1. (a) View of the right half of the transformer after machining the
reduced height waveguide. (b) View of the right half of the transformer
after the slitting saw has been used to produce one side of the transition
from full to reduced height. () The complete right half. (d) An
exploded view of the finished transformer. (¢) A solid view of the
transition region beginning about midway down the length of the taper.

of full height waveguide with sections of its narrow walls
tapering in a circular arc towards the center until only the
desired reduced height waveguide remains (Fig. 1(e)). Fig.
2(a) shows a series of cross sections along the longitudinal
axis of the transformer, corresponding to the numbered
positions in Fig. 1(d). The length of the taper is determined
by the radius R of the slitting saw and the depth of.cut
(waveguide half-width) a according to L = (2aR — a?)'/2.

A taper with a linear rather than circular-arc-shaped
profile can be formed by tilting the workpiece and moving
it longitudinally under the slitting saw while the transition
is being machined.

In cross section, the device resembles a symmetrical form
of the channel waveguide described by Vilmur and Ishii [1].
An equivalent structure has also been termed cross-shaped
[2] and crossed [3], [4] rectangular waveguide in the litera-
ture. The authors chose to use the term channel waveguide
as it contrasts well with the more familiar ridged guide;
one can think of the ridge as having been inverted to form
a channel along the axis of propagation.

III. THEORY AND ANALYSIS

A. The Characteristic Impedance Method

An approximate analysis of a taper of arbitrary cross
section between two uniform waveguides propagating a
single mode has been given by Johnson [5]. The tapered
region is replaced by a series of short butt-jointed uniform
waveguides each having its own propagation constant and
guide impedance. Letting the number of sections become
large and neglecting higher order modes and multiple
reflections, Johnson arrived at the following expression for
the reflection coefficient of the dominant mode:

T|,.0= %_[OL%exp [—ZLzy(z’) dz’} dz (1)

where the integration is over the length L of the trans-
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Fig. 2. (a) A series of cross sections taken along the length of the
transformer. The numbers correspond to the positions indicated in Fig.
1(d). (b) A typical cross section defining the varables used in the
theoretical analysis.

former. For a gradual transition, Z.(z) can be equated
with the characteristic impedance of a uniform waveguide
having the same cross-sectional dimensions as the trans-
former at position z. y(z) = a(z)+ jB(z) is the propaga-
tion constant of the mode in each short section of guide
and reduces simply to jB(z) for a lossless transition. 8(z) is
related to the cutoff wavenumber, k (z) via

8= (e —k2)"*

where w = 27f is the radian frequency of the incident wave
and p and € are the permeability and permittivity of the
medium in the transition. Considering each cross section in
Fig. 2(a) to be that of a uniform waveguide, the value of
the cutoff wavenumber k,(z) and hence the propagation
phase constant B(z) can be determined using the method
of transverse resonance (see Appendix A). Approximate
expressions for the transverse fields in the cross section can
then be used to derive a waveguide characteristic imped-
ance.

A second, though more laborious means of calculating
k. and Z, along the length of the transition is to solve the
wave equation in each section of uniform waveguide sub-
ject to the appropriate boundary conditions. Such an anal-
ysis was performed on the channel waveguide by Kuz'min
and Makarov [2] and later by Tham [3] and Lin [4]. By
breaking the cross section into two regions, expanding the
fields in each region in a series of orthogonal functions,
and matching the solutions across the boundary line, a
matrix eigenvalue problem is set up. The lowest order
eigenvalue is the wavenumber for the dominant mode in
the guide, and the corresponding eigenvector contains the
coefficients in the series expansion of the field. The fields
can be integrated to determine the equivalent voltage and
current used in calculating the characteristic impedance.
The relevant equations are given in Appendix B, where a
comparison is made between the different methods of
calculating k_ and Z_.

Once the values of k.(z) and Z.(z, f) have been de-
termined, (1) can be integrated numerically to find T at a
particular frequency.

The concept of a characteristic impedance for wave-
guides propagating a single mode is discussed by Shelkunoff
[6]. For certain special cases, such as rectangular wave-
guide, there are three equally useful definitions which
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differ only by constant factors. However, for non-TEM
waveguides generally, and specifically for the channel
waveguide structure, there is no obvious choice of expres-
sion for the characteristic impedance. The equivalent cir-
cuit of a junction between two waveguides with different
cross sections can be described by a transformer, which
couples between the wave impedances of the propagating
mode in the two guides, and a shunt susceptance. To
analyze the tapered channel waveguide rigorously by the
characteristic impedance method, it is necessary to find a
definition which results in a unity transformer ratio at each
incremental change of cross section (as would be the case
for a TEM or rectangular TE,;-waveguide taper using the
conventional characteristic impedance definitions). Cohn
[7] used a particular definition of characteristic impedance
in analyzing ridged waveguide. As shown in Section IV, we
have found that an.analogous definition for channel wave-
guide gives acceptable agreement with experiment. How-
ever, we know of no way to prove that this definition
actually does result in a unity transformer ratio.

B. The Method of Mode Coupling

The method of mode coupling! is a more general ap-
proach to the analysis of waveguides with slowly varying
tapers. Early work by Schelkunoff [8] on a system of
generalized Telegraphist’s equations, and subsequent appli-
cations by Reiter [9], Solymar [10], and Katzenelenbaum
[11] resulted in a general theory of coupled wave equations.
This theory avoids using the concept of a characteristic
guide impedance, and is not restricted to single-mode
propagation. It was shown by Solymar [10] that the reflec-
tion coefficient of the dominant mode of a sufficiently
gradual taper depends only upon the variation of two
quantities along the taper: the wave impedance, and one of
a set of mode coupling coefficients. The appropriate cou-
pling coefficient, which describes coupling from the for-
ward-traveling wave into the backward-traveling wave, is
calculated from the transverse electric or magnetic field at
each cross section of the transformer.

Since analytic expressions for the fields were available
from [3] or [4], a concerted effort was made by us to apply
Solymar’s theory to the channel waveguide transformer.
However, we found that it was not practical to predict the
transformer performance with reasonable accuracy using
this method. The problem appears to be the slow conver-
gence of the series representing the fields in the channel
waveguide.

Both the mode matching method of [3] and the Ritz-
Galerkin method of [2] and [4] express the fields in the
waveguide as infinite series satisfying the boundary condi-
tions at each cross section. In any practical computation
these series must be truncated. It was found that the matrix
eigenvector problem could not be solved accurately unless
the matrix was truncated at 5X5 or fewer elements. It is
clear from Fig. 3 that the resulting electric field expressions

'A useful discussion of the method of mode coupling is given in the
monograph by Sporleder and Unger [18].
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Fig. 3. (a) A plot of the x component of the electric fields along x = s,
from y = 0 to y = b when s /a = 0.5. This includes the boundary line at
which the fields in the two regions of the cross section (see Fig. 2) are
matched, and the side wall of the channel. The plot has been made
using the field expansions given in Appendix B, with the series trun-
cated to five terms. Ideally E, should become mflmte as y approaches
d. (b) A similar plot of the y component of the electric fields. £ " and
E, should be equal from y =0 to d and should become infinite’ as y
approaches d. Ez must become zero when y > 4.

are a poor approximation to the full series solution near
the start of the channel, and especially in the region of the
singularity at the obtuse corner. Montgomery [12] made
the same observations when he used the Ritz-Galerkin
method to find the fields of the ridged waveguide. It so
happens that the backward wave coupling coefficient for
the dominant mode of the channel waveguide is governed
only by the fields along the side wall of the channel .
(x =1s), where they are most poorly represented by the
truncated series. One might expect that the value of the
coupling coefficient as determined from this series would
be too small. Indeed, it was found that one could get the
mode coupling theory to agree with measured values of
reflection coefficient if the coupling coefficient, as calcu-
lated from the truncated serics expansions, was increased
from two to four times.

An alternative approach to the mode coupling method
would be to use a numerical finite difference scheme to
determine the fields in the channel waveguide transformer
more accurately, and then to use the small coupling theory
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of Solymar to calculate the reflection coefficient. Such an
approach was used by Saad, Davies, and Davies [13] in the
design of a Marie mode transformer.

C. Choice of Method

For the reasons described in the previous section, the
characteristic impedance method was used in deriving the
theoretical results given in this paper.?

The following steps summarize the algorithm used for
determining the reflection coefficient of the channel wave-
guide transformer. ‘

a) The input and output waveguide sizes are specified,
together with expressions for the cross-sectional dimen-
sions at any point along the length of the transition.

b) The transcendental equation in Appendix A, or the
eigenvalue equation in Appendix B, is solved at each of a
series of cross sections along the length of the transformer.
The lowest order roots from either method yield the TE -
mode cutoff wavenumbers k (z). For the results presented
in this paper, the transverse resonance method was used, as
it requires much less computing time than the solution of
the eigenvalue problem.

¢) The waveguide characteristic impedance Z (z) is ob-
tained using either the transverse resonance method (Ap-
pendix A) or the eigenvalue method (Appendix B). Again,
in this paper the transverse resonance method was used
because of the saving in computer time.

d) The propagation phase constant B8(z) is found from
the wavenumber, and the logarithmic derivative of the
characteristic impedance is determined at each cross sec-
tion along the length of the transformer.

¢) The reflection coefficient I" at the start of the taper is
calculated from (1) by numerical integration.

f) Steps d) and e) are repeated at each frequency of
interest.

IV. COMPARISON WITH EXPERIMENT

To check the accuracy of the analysis, three channel
waveguide transformers having input to output height ratios
of 2, 3, and 4 were fabricated in X-band waveguide
(8.2-12.4 GHz). The transitions used linear tapers with
half angles of 8 and 10 degrees, and lengths approximately
one guide wavelength (as measured in X-band rectangular
waveguide) at 8 GHz. The voltage standing wave ratio over
the entire waveguide band was measured using a slotted
line and a well matched sliding load in the reduced height
guide> A comparison of the measured and computed
VSWR for each of the transformers appears in Fig. 4.
Calculated values of the normalized cutoff wavenumber
k /k. (k. =2m/4a) versus position along the length of
the taper are shown in Fig. 5 for the three transformer
ratios. Notice that the cutoff frequency in the full- to

20ne other approach brought to the authors® attention by one of the
reviewers is the WKB method discussed by Leonard and Yen [19] in their
analysis of flared waveguide junctions. We have not attempted to evaluate
this method.

3The load was fabricated from LDV Radite #75 tapered to a single
point at the side wall of the reduced height waveguide.
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position along the taper for the transformers of Fig. 4. The cutoff
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one-quarter-height transition increases to 1.35 times its
value in rectangular waveguide (s/a=1). This effect re-
duces the usefulness of the transformer near the low end of
the waveguide band. Two simple remedies to this problem
are given in Section V1.

The agreement between the theory and the experimental
data is fairly good except at very low values of VSWR.
This discrepancy cannot be accounted for by measurement
errors and is especially noticeable in the full- to one-
quarter-height design. As can be seen in Fig. 6, the only
higher order TE mode able to propagate in any portion of
the transition is the TE,, mode which, being asymmetrical,
should not be excited in this structure. Although the mag-
nitude of the reflection coefficient is particularly sensitive
to the value of k_, an error in this variable would show up
at all frequencies and not simply when the VSWR is low.
The calculation of C,, the discontinuity capacitance associ-
ated with the edge of the channel (see Appendix A), takes
into account proximity effects when the channel width is
small but not when it approaches the outer dimensions of
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Fig. 6. The TE-mode wavenumbers, normalized to those of X-band
rectangular waveguide, along the length of the full- to one-quarter-height
transformer of Fig. 4. The normal operating band is bounded by the
horizontal broken lines. The broken curve represents the TE,, mode of
a bulgy transformer, discussed in Section VL.

the guide (s = a). It was found that an increase in the value
of C, in the region where s is close to @ will have a
noticeable effect on the VSWR wherever the reflection
coefficient is small. The effect is to bring the measured and
predicted performance into closer agreement.

Because of the observed discrepancies between the the-
ory and measurements for small values of VSWR, the
design curves given in the next section must be used with a
degree of caution. Clearly, if one does not deviate signifi-
cantly from the three prototypes in this section the theory
will adequately predict the transformer performance. For
transformer ratios and taper angles which are substantially
different, the design curves in Section V should’ not be
relied on to give precise VSWR values below 1.1. For
general use, however, the curves should enable the designer
to select an easily fabricated transformer to meet his needs.

V. DESIGN CURVES

The algorithm described in Section III and Appendix A
was used to analyze two different types of channel wave-
guide transformer. Those of the first type have circular-
arc-shaped tapers which could be produced with slitting
saws of various diameters, while those of the second type
have linear tapers with various half angles. The former
design is somewhat easier to fabricate at millimeter wave-
lengths, whereas the latter configuration is more suitable
for use at lower frequencies where the required slitting saw
diameters would be prohibitively large. Transformers with
input to output height ratios of 2, 3, and 4 were examined.
In every case the taper was divided into 50 cross sections
for the analysis. Increasing this number had no significant
effect on the results.

Plots of the predicted VSWR versus normalized
frequency for the transformers with the circular-arc-shaped
tapers are shown in Figs. 7-9. The three curves represent
transformers whose lengths are 1.5, 2, and 2.5 times the
guide wavelength in standard rectangular waveguide at the

477
1.30 FELA TN B I I L S U RO BN B B B N
naskit 1 FULL TO I/2 HEIGHT TRANSFORMERS WITH | -
' FA CIRCULAR—ARC SHAPED TAPERS |
R ' !
: ‘| | ! Standard
.38 Ty Taper Length (L/Xg) | Woveguide =
i _ ° | Band Edge
130 « 4 =he ! n
x . ll ——= 22,0 I
Bouesh s\ 2.8 i A
> "\ Height Ratio (b/d)=2 |
.20} ;}‘ Width/ Height (a/b)=2 ! 4
|.15F N i -
f." !
tof 1% ! -
wos |- PN G- ' -
PPN B BT T = ot S G o M e T B 3
.20 130 140 1.50 1.60 1.70 1.80 1.90 2.00

t /f, (NORMALIZED FREQUENCY)

Fig. 7. Predicted VSWR versus normalized frequency for three full- to
one-half-height transformers with circular-arc-shaped tapers. The curves
represent transformers whose lengths are 1.5, 2, and 2.5 times the guide
wavelength in rectangular waveguide at the center of the band (A P
da/(V—(f./fo)H)V/?, with f, /f.=1.57). The frequency is normalized
to the cutoff frequency of the rectangular waveguide f.= ¢/4a. The
slitting saw. radius used to produce a particular taper is given by
R/a=13461(L/A 0)2 +0.5. The width to height ratio (a/b) of the
full-height waveguide is 2: 1, which is characteristic of most millimeter
waveguides. The two vertical lines indicate the normal operating band.

1.50

L | | I T L T ¥ T 1 T TT 7 T
: t1 |FULL TO 1/3 HEIGHT TRANSFORMERS WITH
(X 1) of i 1 CIRCULAR-ARC SHAPED TAPERS : b
] 2 ]
.40 . “1
F ; '.\ ! Standard
.35 = ! Toper Length (L/X, ) Waveguide —f
l |
A % .
| "‘ :15 | Band Edge
.30 | "\ P |
S ! M w25 '
a5k Al : | E
> | "\ Height Ratio (b/d)=3 |
20k | [y Width/Height (a/b}=2 | _
1 [N 1
Lsg | s\ ! .
| N\ |
tof | RN { .
. ~
1 ‘e S | -
[RelY 4 { . \\'..
feye) MR VLA SN SRS N T R S S M S M M Yot Sl
1.20 1.30 140 1.80 1.60 170 1.80 .90 2.00

f /f, (NORMALIZED FREQUENCY)

Fig. 8. Predicted VSWR versus normalized frequency for three full- to
one-third-height transformers with circular-arc-shaped tapers. The
transformers have the same lengths and width-to-height ratio as in Fig.
7. '

1.50 I PSLANL A S 0 WL N B B S B B BN B B
Lask ! 11\ FULL To 174 HEIGHT TRANSFORMERS 4
| 1\ WITH CIRCULAR-ARC SHAPED TAPERS
| e\ ' -
Laof | '\ |
| M Taper Length (L/Xg ) i Standard
1.35 = \ VA ° | Woveguide =~
| . A f"s | Band Edge
Lok T --- =20 | 4
« ] <\ ceees 25 i
Zesk .\ Height Ratio (bsd)=za | b
> | Y Width/Height (0/b)=2 [
.20~ [ N\ | .
I . \\ !
LIS} 1 . 1 =
| ", \\ i
Lo : . N : -
. N\
sk | W N | J
PP I I TR SR T SN WO S AR T o ol ek i
.20 .30 {40 1.50 1.60 L70 .80 .80 2.00

f /f, (NORMALIZED FREQUENCY)

Fig. 9. Predicted VSWR versus normalized frequency for three full- to
one-quarter-height transformers with circular-arc-shaped tapers. The
same conditions apply as in Fig, 7 and Fig. 8.



478

LISk
10

105}

1,50 T v T T 1 =TT T 17 T 7
1.45 -" |FULL TO 172 HEIGHT TRANSFORMERS WITH LINEAR TAPERS
. | |
st | i .
Standard
Las: : Taper Length (L/)\go) : Waveguide =
ot =hLS | Band Edge
L3034 ——— =20 i b
13 B! ver 225 1
X LasF |y | n
(4 | Height Ratio (b/d)=2 1
.20k :. Width/Height (a/b) =2 | .
. |
|
[}
|
|
|
!

ool
120 130

.90

140 1.50 1.60 170 1.80
f /t, {NORMALIZED FREQUENCY)

Fig. 10. Predicted VSWR versus normalized frequency for three full- to
one-half-height transformers with linear tapers. The curves represent
tapers with half-angles chosen to give the same overall length as those
of Figs. 7-9, i.e., 0 = arctan (0.1927/(L/ A ). All other conditions are
the same as in Figs. 7-9.

130 —T7T T T T T T T T T T
b FULL TO /3 HEIGHT TRANSFORMERS !
toud i
LasE 4y WITH LINEAR TAPERS ) T
taof 14 ! -
: o l Stendard
L35 | . \ Toper Length (L/)\%) | Waveguide =1
| '. ‘ =18 I Bond Edge
.30 | : ——=z20 |/ -1
@ | . . =2, !
=251 - &° i -
L i " Height Rato {b/d}=3 1
> Laok 1 . Width/Height {a/b) =2 | 4
! B I
s | | ~
i |
110} } ll
| I
105 | ) —
| N \.\.. D = |
1.00 U S U W et A 120 weltlh O -
.20 .30 140 1.50 1.60 L.70 1.80 1.90 2.00
f /f, (NORMALIZED FREQUENCY)
Fig. 11. Predicted VSWR versus normalized frequency for three full- to
2 q Y

one-third-height transformers with linear tapers. The taper half-angles
are chosen to give transition lengths identical to those of Figs. 7-10. All
other conditions are the same as in Figs. 7-10.

LSO T T T 1T T I 1T T I T T
! Y FULL TO 1/4 HEIGHT TRANSFORMERS
1.5 : Ty WITH LINEAR TAPERS | -
H !
Laof | Ty ! i
R \ Stondard
.35 = : A | Wavaguide =
| : ! Taper Length (L/Xg ) | Band Edge
L30fF ! B .
c;: I : ‘\ _2 o !
.25} | . T ot I -1
ES | B \\ s28 !
.20~ ! A Height Ratlo (b/d)=4 | —
| PR Width /Helght (a/b) =2 |
LIS ! PR !
I "\ \ I
Liop | AN I
: A |
.05 - | |
-
1.00 LS T T S | : 3
1.20 1.30 140 .50 1.60 .70 1.80 .90 2.00

f /f, (NORMALIZED FREQUENCY)
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center of the band. The design data for transformers with
linear tapers are given in Figs. 10-12, where the predicted
VSWR for transitions with different half-angles are shown.
The half-angles are chosen to yield taper lengths equal to
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Fig. 13. Predicted values of the normalized wavenumber versus position
along the transition for the three circular-arc-shaped transformers in
Figs. 7-9. The wavenumber is normalized to that in the rectangular
waveguide at the start of the taper (k. =27/4a), and the ratio of
guide width to full height is assumed to be 2:1, characteristic of
standard millimeter waveguides.
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Fig. 14. Predicted values of the normalized wavenumber versus position
along the length of the transition for the three linearly tapered trans-
formers of Figs. 10-12. The same conditions apply as in Fig. 13.

those of the circular-arc-shaped transformers in Figs. 7-9.
The expected rise in the wavenumber as a function of
position along the taper is plotted in Figs. 13 and 14 for
both sets of transformers.

The overall performance of the transformers with linear
tapered transitions is slightly better than those with cir-
cular-arc-shaped profiles. Transformers of large input to
output height ratios do not perform well at the low end of
their waveguide bands regardless of their length. Fairly
good performance can be expected, however, if one oper-
ates far enough above the maximum cutoff frequency in
the transition. In the next section, methods of increasing
the bandwidth of the transformers are described which
lead to designs having useful performance over the full
waveguide band.

VI. BROAD-BAND TRANSFORMERS

Two approaches for improving the low-frequency perfor-
mance of channel waveguide transformers were investi-
gated. The first is to use two transformers with low height
ratios in series to achieve the desired overall ratio. It is
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clear from Figs. 13 and 14 that the cutoff frequency of a
channel waveguide transformer is related to the input and
output waveguide heights. Two transformers of low height
ratio in series should have a lower VSWR than a single
high-ratio transition.

A second way of improving the low-frequency perfor-
mance is to vary the waveguide width along the transform-
er, which can be done without significantly complicating
the fabrication procedure. This approach is suggested by
the observation, based on Figs. 13 and 14, that the cutoff
frequency of a channel waveguide transformer is governed
by the dimensions of the cross section with the highest
value of k. /k,, which occurs when s/a = 0.55.

A. Two-Stage Transformers

The analysis of a transformer from full- to half-height in
series with a half- to quarter-height transformer indicates a
substantial improvement in performance across the wave-
guide band. The maximum cutoff frequency in the transi-
tion is reduced to that of the full- to half-height trans-
former design. Measurements on a transformer of this type
in WR-10 (75-110 GHz) waveguide confirmed the theoret-
ical results.

The approach could be extended to produce a trans-
former with many steps in height. If the individual tapers
were to overlap, the resulting structure could be analyzed
using the same method as in Appendix A. No design
curves are offered here because of the large number of free
parameters.

B. Bulgy Transformers

To make a channel waveguide transformer with in-
creased width near the middle of its length, the same setup
and cutting tool can be used as for the unmodified design.
Upon completing the reduced height waveguide section (as
in Fig. 1(a)) one simply moves the slitting saw to the centet
of what is to be the transition region, and plunges down-
wards, producing a circular-arc-shaped bulge in the narrow
wall of the guide. The length of the bulge is determined by
the slitting saw radius R and the depth of the cut according
to Ly = (2hR — h?)'/2 where h is the depth at the midpoint
of the bulge. ‘

Figs. 15 and 16 show the results of the theoretical
analysis on a group of full- to one-quarter-height bulgy
channel waveguide transformers in which the bulges extend
the full length of the transition. The transformer lengths
correspond to those of Figs. 7-12 and the bulge depths,
fixed by the slitting saw radii, increase the reduced height
waveguide width by ~ 25 percent at the midpoint of the
transition.

Figs. 17 and 18 show the normalized wavenumber along
the longitudinal axis of the transformers. The maxima have
" been reduced significantly compared with the correspond-
ing bulgeless transformers of Figs. 13 and 14. The analysis
indicates that transformers with circular-arc-shaped tapers
will perform better than those with linear tapers when a
bulge is added to the width of the reduced height section.
Using this design, it is possible to reduce the VSWR to less
than 1.2 over the full waveguide band.
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Fig. 15. Predicted VSWR versus normalized frequency for three full- to
one-quarter-height bulgy transformers with circular-arc-shaped tapers.
Each curve corresponds to one of the transformers in Fig. 9, modified
with a bulge in the width of the reduced height waveguide. The bulges
are made with the same slitting saw used to produce the rest of the
transformer and extend the full length of the transition. The reduced
height waveguide width is increased by a maximum of ~ 25 percent at
the midpoint of the taper.
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Fig. 16. Predicted VSWR versus normalized frequency for three full- to
one-quarter-height bulgy transformers with linear tapers. Each curve
corresponds to one of those in Fig. 12. All other conditions are the
same as in Fig. 15.
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Fig. 17. Predicted normalized cutoff wavenumber versus position along
the transition for three bulgy circular-arc-shaped transformers with
different height ratios. The cutoff wavenumber is normalized to that in
the rectangular guide at the start of the taper (k. = 27/4a) where the
width-to-height ratio (a/b) is 2:1. The curves should be compared to
the corresponding bulgeless designs of Fig. 13.
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Fig. 18. Predicted values of the normalized cutoff wavenumber versus
position along the transition for three linearly tapered, bulgy trans-
formers with different height ratios. The same conditions apply as those
of Fig. 17. These curves should be compared to the corresponding
bulgeless designs in Fig. 14.
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Fig. 19. Measured and predicted VSWR versus frequency for a full- to
one-quarter-height bulgy transformer at X-band. The transformer is the
same as that shown in Fig, 4 with the addition of a bulge in the reduced
height waveguide which extends over the full length of the taper. The
bulge was made with a rotary milling head, whose effective cutting
radius was 5 in, and increases the width of the guide by 37 percent at
the midpoint of the transformer. The taper half-angle of the linear
transition is 10 degrees, yielding a transformer length of 6.482 cm. Note
that at the high-frequency end of the band the TE,, mode can propa-
gate in part of this transition (see Fig. 6). The error bars reflect the
mismatch uncertainties of the sliding load.

To check the accuracy of the analysis of the bulgy
transformer a bulge was made in the full- to one-quarter-
height X-band channel waveguide transformer described in
Section IV. The bulge increased the waveguide width by 37
percent at the maximum and extended over the full length
of the taper. The measured and predicted performance are
compared in Fig. 19.

The difference between the experimental and theoretical
curves here is greater than in the nonbulgy cases. This may
be due to the fact that coupling between the fundamental
and higher order evanescent modes, especially the TE;,
mode (see Fig. 6), from one section of the taper to the next,
ignored in the analysis, has a greater affect in the bulgy
transformers. It is clear, nonetheless, that the addition of a
bulge to the transformer results in a significant improve-
ment in low-frequency performance.

VII. CONCLUSIONS

A. Summary

A new type of easily fabricated H-plane waveguide
transformer has been described. The results of a theoretical
analysis of the structure agree fairly well with measure-
ments made on X-band transformers with input to output
height ratios of 2, 3, and 4. Two basic versions of the new
design were analyzed and the results presented graphically.
The analysis indicates that in its simplest form the trans-
former is not usable at the lower end of its waveguide band
when the height ratio is large. For high-ratio transitions, a
two-stage transformer gives better results. The bandwidth
of the single-stage transformer can be increased to cover
the full waveguide band by increasing the width of the
reduced height waveguide in the tapered region. Analysis
indicates that the performance of transitions with high
impedance ratios could be improved dramatically with
only a small increase in waveguide width. Using the same
slitting saw to form the reduced height waveguide, the
transition section, and the bulge in the width, no additional
complication is added to the fabrication process. Measure-
ments of the VSWR of a bulgy full- to one-quarter-height
transformer at X-band confirmed the predictions of the
computer analysis although agreement with theoretical re-
sults was not as close as it was for the unmodified trans-
formers.

B. Approximations in the Analysis

The design curves given here should be sufficient in most
cases to achieve transformers with a VSWR <1.2 over a
full waveguide band. However it is important to ask why
the measured and computed results showed consistent dis-
crepancies at low VSWR’s, and in the case of the bulgy
transformer, why the low-frequency results were not in
closer agreement. As mentioned in Section VI-B, the as-
sumption that there is no coupling between the fundamen-
tal and higher order evanescent modes in the transition is a
possible source of error.

The somewhat arbitrary choice of the voltage and cur-
rent variables used to define the characteristic impedance
of the channel waveguide, discussed in Section III-A, is
justified only in that it gives good agreement between
theory and experiment. The same definition was used by
[7] and [17] in their analyses of ridged waveguides.

The approximations inherent in the transverse resonance
and characteristic impedance methods lead to errors whose
magnitudes are difficult to estimate. These uncertainties
might be circumvented if a finite difference technique [13]
for determining the fields in the transformer were com-
bined with the complete mode coupling theory of Solymar
[10].

C. Applications

The channel waveguide transformer is particularly suit-
able for use at millimeter wavelengths where the fabrica-
tion of conventional step and tapered transformers is dif-
ficult and expensive. The transformer can be formed in a
split-block waveguide structure using a single setup on a
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milling machine. The block is split in the E-plane which
has zero transverse current, and hence poor contact along
the joint line will cause no loss.

The authors have successfully used the full- to one-half-
height channel waveguide transformer with a circular-arc-
shaped taper in two solid-state frequency multipliers, with
their outputs in WR-5 and WR-8 waveguide. The equiva-
lent full- to one-quarter-height design has been used in a
mixer at 115 GHz. Fabrication time for these devices was
reduced dramatically by employing the new transformer.
The design is also useful as a transition from the crossed or
channei waveguide [1]-[4] to conventional rectangular
waveguide.

APPENDIX A
TRANSVERSE RESONANCE SOLUTION FOR &, AND
THE DETERMINATION OF Z,

A. Cutoff Wavenumbers by Transverse Resonance

The method of transverse resonance [14] was applied by
Cohn [7] to calculate the TE,,-mode wavenumbers of
ridged waveguide. It was later used by Vilmur and Ishii [1]
for the determination of the TE,,-mode cutoff frequencies
of single-channel waveguide. Precisely the same technique
can be employed on the double-channel waveguide to
obtain the equivalent circuit of Fig. 20 and the following
relation involving k, |

1- g tan(kclos)tan(kclo(a -s))

—dk

Cm—tan(kcl (a—s)) (A1)
This equatlon has the same form as that derived by Pyle
[15] for ridged waveguide when the following identifica-

tions are made: ( )1 P b

II

__(E_)1/2_‘_1_
e
a=b
‘®1=
®2= cma_s)
k. C,l
=—. (A2)
(ne)

C, is a discontinuity capacitance which accounts for the
generation of higher order modes at the edge of the chan-
nel. Whinnery and Jamieson [16] approximated C, to a
high degree of accuracy by

2 2
L =(}"l[l+—lcoshl (‘1+a )42111( 4a_ )}
€ T & 1-a? 1-a?
(A3)
The multiplier G is a proximity effect term which decreases
the value of C, when the channel width becomes small

(s/a=0) and the discontinuities can no longer be consid-
ered as being isolated from one another. It is given, for two
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Fig. 20. A cross-sectional view of the channel waveguide with the equiv-
alent circuit used to derive the wavenumbers by the transverse reso-
nance method of Appendix A. For the wave equation solutions
described in Appendix B, the cross section is divided into the two
regions indicated in the figure and the fields in each are expanded as
series of orthogonal functions. The final solutions are determined after
the application of the boundary conditions, which require' matching of
the tangential fields at the line dividing regions 1 and 2.
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values of a, by Whinnery and Jamieson [16, fig. 15]. When
the channel height 2b approaches a half wavelength, the
value of C, must be increased. The effect is small, <10
percent for operation in the standard waveguide band, but
can be incorporated into (A3) by multiplying C; by a
correction factor given in Whinnery and Jamieson [16 Fig.
16].

A computer program was written to solve the transcen- -
dental equation (Al) iteratively for the lowest order root.
The resulting values of k., for 10 positions along the
length of a full- to one-quarter-height transformer in X-
band waveguide are listed in Table 1.

B. Characteristic Impedance

As discussed in Section III-A, the characteristic imped-
ance in the channel waveguide is not unique. Cohn [7] and
Mihran [17] defined a characteristic impedance in ridged
waveguide using the transverse voltage at the center of the
guide divided by the total longitudinal current on the top
face. We have found that this definition, when applied to
the channel waveguide transformer, gives acceptable agree-
ment with experiment.

In a manner analogous to that of Mihran [17] we obtain
for the channel waveguide

V4

b ke,
+ Ecos(kclos) tan( 5 (a- 9))]

(A4)

sin ( kas)

<10

C, 1
“2oos(k, s)+-—
€ bk,
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where
1)
Z, =L (AS)

(5]

is the TE-mode wave impedance. The equation has the
same form as Mihran’s equation (2). Note that C, contains
a frequency dependent term which should be included in
the solution of (A4).

APPENDIX B
WAVE EQUATION SOLUTION FOR ka AND THE
DETERMINATION OF cho

A. Cutoff Wavenumbers from the Wave Equation

The field relations derived by Tham [3] for the channel
waveguide are given in (A6)-(Al4). The unnormalized
expressions for the TE,, magnetic fields at any cross
section along the length of the channel waveguide trans-
former are (referring to Fig. 20)

%
H, = r=0§4’ N @,rcosh(plr(zia - %) cos[;—Z(d - y))
(A6)
and
H. = ) szmsinh(pzm%)cos(r;—;(b—y))
m=0,2,4, -

(A7)

where ®, and ®, are complex constants. Also

2
P} = —4k2 @+ (2 (A8)
and
2
pi = —4k? g +($) : (A9)

Subscript 1 refers to the region s<x<a, 0< y<d and
subscript 2 refers to the region 0 < x <s5,0< y<b. The
eigenvalue equation which must be solved to find the
wavenumbers k. is

> Y ®,4,,=0. (A10)
n=0,2,4,--- m=0,2,4.-.
This has a solution if
det[a] =0. (A11)

a,,, is given by

Apm = Sinh(pzmzia)

4d ad CrnCrm i_l
[{7 Z per—tanh(pb(za 2))}

r=0,2.4,-- r

b Am(snm

tanh ( sz%)
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where
1 pd m nw
C,,= 2/() cos(z—d(d— y))cos( b (b y)) dy.
(A13)
®, and @, are related by
o — 2
Im s 1
AmCOSh(le(z—a - 5))
d s
Y @,G,sinh(p, 5] (Al4)
n ﬂza
n=0,2,4,
where
A,=2ifm=0
=1 otherwise.

A computer program was written to solve (A6)-(Al4)
for k, and H, . It was found that the infinite sums could
be truncated to the first three terms without appreciable
loss of accuracy. The solutions to (All) provide all the
TE 44 even-mode wavenumbers, but only the lowest nonzero
value is required for calculating k. . An initial guess for
k., is taken to be the TE,, rectangular guide wavenumber;
(A), (A9), and (Al3) are calculated; the matrix terms in
(A12) are formed; and (All) is solved using the IBM SSP
program MINV. There is no effect on the solution of (A11)
if a,,, in (A12) is divided through by the sinh term outside
the brackets. The terms in the matrix will then all be real,
since p, and p, are always pure real or pure imaginary, and
the evaluation of the determinant is considerably faster. If
the solution of (All) is greater than a specified limit, then
k. . 1s incremented, a is reformed, and the determinant
reevaluated. Following the suggestion in [4], if a sign
change occurs in the value of the determinant, then the
increment for k is halved and its sign is reversed. Usually
k., converges to 8 decimal places within 40 iterations when
a 3% 3 matrix is used. When more than five terms are used
in the series in (A6)—(A14) the solution of {A11) becomes a
very sensitive function of k. and the eigenvectors in (A10)
are then difficult to determine accurately. In Table I, the
values of k. as found from (Al1) are compared with those
obtained from the solution by the transverse resonance
method ((A1)) for ten values of the channel width. Results
are shown with the series truncated at 3 and 7 terms. The
two methods agree to within 0.5 percent.

Once the values of k. ~at each cross section have been
determined, they are used in (A10) to find the values of the
TE,;-mode eigenvectors. The IBM SSP program MFGR
can be used for this purpose since a is now a real matrix.
The rank of a is always the number of rows —1, and
therefore the eigenvectors for the terms # > 0 are expressed
as multiples of the n =0 term. This causes no difficulty in
determining the characteristic impedance since the arbi-
trary constant divides out. The sinh factor taken out of
(Al2) must now be replaced to obtain the desired
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eigenvectors. If required, a value for the arbitrary constant
can be established by normalizing the transverse fields in
some way, usually so that the power flow at each cross
section is unity. When the @, ’s have been determined, the
®, ’s can be found from (A14) Substitution into (A6)—(A7)
then gives the expressions for the longitudinal field compo-
nents in the two regions of the channel waveguide cross
section. Similar expressions can be obtained using the
Ritz-Galerkin method as in [4] or by breaking the cross
section along the y = d line rather than along x = s.

B. Characteristic Impedance

The characteristic impedance is derived from the equiva-
lent voltage and current as discussed in Appendix A. The
maximum transverse voltage at the center of the channel is
determined by integrating the electric field, E, x dH, /9x,
from —b to b (by symmetry E, = 0. along thlS line). The
total longitudinal current along the upper half (y > 0) of
the channel waveguide is then found by integrating the
transverse magnetic field along the walls, and Z, is calcu-
lated by dividing V by I.

The steps leading to the calculation of Z, are as follows

Z,=V/I (A15)

with
V=-— f E, . dl, = transverse voltage (A16)

and
I= f H, - dl, = longitudinal current. (A17)

E, and H, are transverse field vectors in the waveguide.
They are related to the TE,, orthogonal mode vector
functions by

E, =Vie (A18)
H, = 1,4k, (A19)

where e, and k), are derived from the transverse scalar
wave equation

V¥ + k2, =0 (A20)
using
e =tX V¥, (A21)
and
hyo=2%Xey (A22)
with
[ [ewetyda=1. (A23)

The longitudinal fields in (A6) and (A7) are related to ¥,,
by

Vlokcmq’
_— (A24)

1,2
skl )

where k. is the wavenumber in the guide at cutoff and k,,
is the wavenumber in free-space.

=
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The transverse fields in (A18) and (A19) can be ex-
pressed in terms of H, using Maxwell’s equations

E:=Vloelo=V10(elox-’3+eloyﬁ)
—jké(u)‘/z OH, , 0H,
k? € dy dx

Ht=IIOh10=110(—e10y'e+eloxﬁ)

_ - .]kO i 172 IlO aHz a aHz -
k2 (_e—) _I;I; ax *F dy J). (A2)
‘10

The transverse voltage at the center of the channel wave-
guide is found from

(A25)

(A27)
where H, is obtained from (A6).
The total longitudinal current along the upper half of the
channel waveguide is given by

I= 2[[(:H,2dx+fsaH,ldx +j:’H,2dy +/(;dH,ldy]

(A28)
(v} g | [ ) e [T
[0 o [15) ] e

Substituting for H, and H, from (A6) and (A7) and
carrying out the integrations we obtain

v
z,=7
b
_ ZW(I)ZOPZOE
- s
Y {,sinh(p;,5)
m=0,2,4,-.- 2a

+ @, [ cosh(p,(zsa—%))]
—szsinh(sz‘i%)[l_cos(%(b_d))]

+ q>1m(1—cos(—'?’-2—"-’—))}‘

where Z, =V, /1o = wp /B is the wave impedance for TE
modes. Z is real and positive aboye cutoff.

In Table I, the value of Z, at infinite frequency (before
multiplying through by Z ), as determined from (A30), is
compared with the value obtained from (A4). The results
agree to within ~ 5.0 percent.

As discussed in Section III-B, the field expressions in
(A6)—(AT) converge very slowly in the region near the start
of the channel. If we plot the x and y components of the

(A30)
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transverse electric field along the line x = 5, we see (Fig. 3)
that the truncated series expressions are a poor approxima-
tion to the actual fields. The tangential fields in regions 1
and 2 of Fig. 2 should be identical along the line y = 0 to d,
and for larger y values E, in region 2 must go to zero. At
the corner x=s, y=d, both field components should
become infinite.

Fortunately, the determination of the characteristic im-
pedance is most strongly dependent on the fields along
y=d and y=b and is not affected greatly by the integral
along the side wall of the channel. The same statement
cannot be made for the calculation of the terms in the
mode coupling theory discussed in Section III-B.
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