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Design and Analysis of the Channel
. Waveguide Transformer
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ANTHONY R. KERR, SENIOR MEMBER, IEEE

Abstrad —The anthers describe an easily fabricated H-plane trans-

former for use in rectangular wavegnide carrying the dominant mode. An

approximate theoretical anafysis of the structure is presented, and com-

pnted resrdts are compared with measurements on transformers at X-band.

Design curves are given for transitions from fnfl to one-haff, one-third, and

one-quarter height waveguide. The new transformers have been fonnd

particnfarly nseful for millimeter-wave mixers and multipliers employing

split-block construction. The structure can also be used as a transition from

rectangular to channel wavegnide.

I. INTRODUCTION

w AVEGUIDE MIXERS and frequency multipliers

often use reduced height waveguide for improved

impedance matching to the nonlinear element. A stepped

or tapered transformer is generally employed between the

full and reduced height sections to minimize the mismatch,

These transformers are especially difficult to fabricate at

millimeter wavelengths where the guide dimensions are

very small. Copper electroforming has been used success-

fully; however this process is time-consuming and usually

requires the production of a disposable mandrel for each

finished piece.

This paper describes a new form of H-plane transformer,
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particularly suitable for use in split-block rectangular

waveguide, which can be made quickly and easily with a

slitting saw or single-point cutting tool. The transformer

has been used successfully in frequency doublers up to 220

GHz, and in mixers operating at 115 GHz.

A physical description of the transformer and detailed

fabrication procedures are given in Section II. Section III

outlines an approximate theoretical analysis for the de-

termination of the reflection coefficient. The accuracy of

the analysis is considered in Section IV where VSWR

measurements of three X-band transformers are compared

with computed values. In Section V, the theory is applied

to two transformer configurations and design curves Are

given for transitions from full to one-half, one-third, and

one-quarter height waveguide. Finally, in Section VI, two

modifications are described which increase the bandwidth

of the transformer.

II. DESCRIPTION OF THE TRANSFORMER

The channel waveguide transformer is shown in Fig. 1. It

is most easily fabricated as a split-block structure in which

the two halves are joined along a plane of zero transverse

current (Fig. 1(d)). A slitting saw or single-point tool is

used to cut the reduced height waveguide completely along

the two blocks (Fig. l(a)). The full height waveguide and

transition region are then formed by moving the saw to

each side of the centerline, producing a sloping channel in

part of the block (Fig. l(b) and (c)). The result is a length
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(a) (b) (c)

(e)

Fig, 1. (a) View of the right hatf of the transformer after machining the
reduced height waveguide. (b) View of the right half of the transformer

after the slitting saw has been used to produce one side of the transition
from full to reduced height. (c) The complete right hatf. (d) An

exploded view of the finished transformer. (e) A solid view of the
transition region beginning about midway down the length of the taper.

of full height waveguide with sections of its narrow walls

tapering in a circular arc towards the center until only the

desired reduced height waveguide remains (Fig. l(e)). Fig.

2(a) shows a series of cross sections along the longitudinal

axis of the transformer, corresponding to the numbered

positions in Fig. l(d). Thelength of thetaper isdeterrnined

by the radius R of the slitting saw and the depth of. cut

(waveguide half-width) a according to L = (2aR – a’)’z’.

A taper with a linear rather than circular-arc-shaped

profile can be formed by tilting the workpiece and moving

it longitudinally under the slitting saw while the transition

is being machined.

In cross section, the device resembles a symmetrical form

of the channel waveguide described by Vilmur and Ishii [ 1].

An equivalent structure has also been termed cross-shaped

[2] and crossed [3], [4] rectangular waveguide in the litera-

ture. The authors chose to use the term channel waveguide

as it contrasts well with the more familiar ridged guide;

one can think of the ridge as having been inverted to form

a channel along the axis of propagation.

III. THEORY AND ANALYSIS

A. The Characteristic Impedance Method

An approximate analysis of a taper of arbitrary cross

section between two uniform waveguides propagating a

single mode has been given by Johnson [5]: The tapered

region is replaced by a series of short butt-jointed uniform

waveguides each having its own propagation constant and

guide impedance. Letting the number of sections become
large and neglecting higher order modes and multiple

reflections, Johnson arrived at the following expression for

the reflection coefficient of the dominant mode:

1 ~d(ln Z.)
‘Iz=l) = ~~ &

+uy’)d+z (1)

where the integration is over the length L of the trans-

~15.

*+::*-

(b)

(a) n’

Fig. 2. (a) A series of cross sections taken along the length of the
transformer. The numbers correspond to the positions indicated in Fig.

(d). (b) A typicaJ cross section defining the variables used in the
theoretlcat analysis.

former. For a gradual transition, ZC(Z) can be equated

with the characteristic impedance of a uniform waveguide

having the same cross-sectional dimensions as the trans-

former at position z. y(z)= a(z)+ #3(z) is the propaga-

tion constant of the mode in each short section of guide

and reduces simply toj~( z ) for a lossless transition. P(z) is

related to the cutoff wavenumber, kC( z ) via

p=(@2pE_ ~’)’/’

where a = 2 ~f is the radian frequency of the incident wave

and p and ( are the permeability and permittivity of the

medium in the transition. Considering each cross section in

Fig. 2(a) to be that of a uniform waveguide, the value of

the cutoff wavenumber kc(z) and hence the propagation

phase constant ~(z) can be determined using the method

of transverse resonance (see Appendix A). Approximate

expressions for the transverse fields in the cross section can

then be used to derive a waveguide characteristic imped-

ance.
A second, though more laborious means of calculating

kc and ZC along the length of the transition is to solve the

wave equation in each section of uniform waveguide sub-

ject to the appropriate boundary conditions. Such an anal-

ysis was performed on the channel waveguide by Kuz’min

and Makarov [2] and later by Tham [3] and Lin [4]. By

breaking the cross section into two regions, expanding the

fields in each region in a series of orthogonal functions,

and matching the solutions across the boundary line, a

matrix eigenvalue problem is set up. The lowest order

eigenvalue is the wavenumber for the dominant mode in

the guide, and the corresponding eigenvector contains the

coefficients in the series expansion of the field. The fields

can be integrated to determine the equivalent voltage and

current used in calculating the characteristic impedance.

The relevant equations are given in Appendix B, where a

comparison is made between the different methods of

calculating kc and ZC.

Once the values of kC(z) and ZC(Z, f ) have been de-

termined, (1) can be integrated numerically to find r at a

particular frequency.

The concept of a characteristic impedance for wave-

guides propagating a single mode is discussed by Shelkunoff

[6]. For certain special cases, such as rectangular wave-

guide, there are three equally useful definitions which
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differ only by constant factors. However, for non-TEM

waveguides generally, and specifically for the channel

waveguide structure, there is no obvious choice of expres-

sion for the characteristic impedance. The equivalent cir-

cuit of a junction between two waveguides with different

cross sections can be described by a transformer, which

couples between the wave impedances of the propagating

mode in the two guides, and a shunt susceptance. To

analyze the tapered channel waveguide rigorously by the

characteristic impedance method, it is necessary to find a

definition which results in a unity transformer ratio at each

incremental change of cross section (as would be the case

for a TEM or rectangular TEIO-waveguide taper using the

conventional characteristic impedance definitions). Cohn

[7] used a particular definition of characteristic impedance

in analyzing ridged waveguide. As shown in Section IV, we

have found that an-analogous definition for channel wave-

guide gives acceptable agreement with experiment. How-

ever, we know of no way to prove that this definition

actually does result in a unity transformer ratio.

B. The Method of Mode Coupling

The method of mode couplingl is a more general ap-

proach to the analysis of waveguides with slowly varying

tapers. Early work by Schelkunoff [8] on a system of

generalized Telegraphist’s equations, and subsequent appli-

cations by Reiter [9], Solymar [10], and Katzenelenbaum

[11] resulted in a general theory of coupled wave equations.

This theory avoids using the concept of a characteristic

guide impedance, and is not restricted to single-mode

propagation. It was shown by Solymar [10] that the reflec-

tion coefficient of the dominant mode of a sufficiently

gradual taper depends only upon the variation of two

quantities along the taper: the wave impedance, and one of

a set of mode coupling coefficients. The appropriate cou-

pling coefficient, which describes coupling from the for-

ward-traveling wave into the backward-traveling wave, is

calculated from the transverse electric or magnetic field at

each cross section of the transformer.

Since analytic expressions for the fields were available

from [3] or [4], a concerted effort was made by us to apply

Solymar’s theory to the channel waveguide transformer.

However, we found that it was not practical to predict the

transformer performance with reasonable accuracy using

this method. The problem appears to be the slow conver-

gence of the series representing the fields in the channel

waveguide.

Both the mode matching method of [3] and the Ritz-

Galerkin method of [2] and [4] express the fields in the

waveguide as infinite series satisfying the boundary condi-

tions at each cross section, In any practical computation

these series must be truncated. It was found that the matrix

eigenvector problem could not be solved accurately unless

the matrix was truncated at 5 x 5 or fewer elements. It is

clear from Fig. 3 that the resulting electric field expressions

1A useful discussion of the method of mode coupling is given in the
monograph by Sporleder and Unger [18].
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Fig. 3. (a) A plot of the x component of the electric fields along x =s,

from y = O toy= b when s/a= 0.5. This includes the boundary line at
which the fields in the two regions of the cross section (see Fig. 2) are

matched, and the side wall of the channel. The plot has been made

using the field expansions given in Appendix B, with the series trun-

cated to five terms. Ideatly E2, should become infinite as y approaches

d. (b) A similar plot of they component of the electric fields. E,, and
E2, shontd be equaf from y = O to d and shoold become infinite as y

approaches d. E2Y must become zero when y > d.

are a poor approximation to the full series solution near

the start of the channel, and especially in the region of the

singularity at the obtuse corner. Montgomery [12] made

the same observations when he used the Ritz-Galerkin

method to find the fields of the ridged waveguide. It so

happens that the backward wave coupling coefficient for

the dominant mode of the channel waveguide is governed

only by the fields along the side wall of the channel

(x= s), where they are most poorly represented by the

truncated series. One might expect that the value of the

coupling coefficient as determined from this series would

be too small. Indeed, it was found that one could get the

mode coupling theory to agree with measured values of

reflection coefficient if the coupling coefficient, as calcu-

lated from the truncated series expansions, was increased

from two to four times.

An alternative approach to the mode coupling method

would be to use a numerical finite difference scheme to

determine the fields in the channel waveguide transformer

more accurately, and then to use the small coupling theory
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of Solymar to calculate the reflection coefficient. Such an

approach was used by Saad, Davies, and Davies [13] in the

design of a Marie mode transformer.

C. Choice of Method

For the reasons described in the previous section, the

characteristic impedance method was used in deriving the

theoretical results given in this paper.2

The following steps summarize the algorithm used for

determining the reflection coefficient of the channel wave-

guide transformer.

a) The input and output waveguide sizes are specified,

together with expressions for the cross-sectional dimen-

sions at any point along the length of the transition.

b) The transcendental equation in Appendix A, or the

eigenvalue equation in Appendix B, is solved at each of a

series of cross sections along the length of the transformer.

The lowest order roots from either method yield the TE ,0-

mode cutoff wavenumbers kC( z ). For the results presented

in this paper, the transverse resonance method was used, as

it requires much less computing time than the solution of

the eigenvalue problem.

c) The waveguide characteristic impedance ZC( z ) is ob-

tained using either the transverse resonance method (Ap-

pendix A) or the eigenvalue method (Appendix B). Again,

in this paper the transverse resonance method was used

because of the saving in computer time.

d) The propagation phase constant /3(z) is found from

the wavenumber, and the logarithmic derivative of the

characteristic impedance is determined at each cross sec-

tion along the length of the transformer.

e) The reflection coefficient r at the start of the taper is

calculated from (1) by numerical integration.

f) Steps d) and e) are repeated at each frequency of

interest.

IV. COMPARISON WITH EXPERIMENT

To check the accuracy of the analysis, three channel

waveguide transformers having input to output height ratios

of 2, 3, and 4 were fabricated in X-band waveguide

(8.2- 12.4 GHz). The transitions used linear tapers with

half angles of 8 and 10 degrees, and lengths approximately

one guide wavelength (as measured in X-band rectangular

waveguide) at 8 GHz. The voltage standing wave ratio over,.
the entire wavegtnde band was measured using a slotted
line and a well matched sliding load in the reduced height

guide.3 A comparison of the measured and computed

VSWR for each of the transformers appears in Fig. 4.

Calculated values of the normalized cutoff wavenumber

kc /kCO(kCO= 2n/4a) versus position along the length of

the taper are shown in Fig, 5 for the three transformer

ratios. Notice that the cutoff frequency in the full- to

2One other approach brought to the authors’ attention by one of the

reviewers is the WKB method discussed by Leonard and Yen [19] in their

analysis of flared waveguide junctions. We have not attempted to evaluate
this method.

3The load was fabricated from LDV Radite #75 tapered to a single
point at the side wall of the reduced height waveguide.
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one-quarter-height transition increases to 1.35 times its

value in rectangular waveguide (s/a = 1). This effect re-

duces the usefulness of the transformer near the low end of

the waveguide band. Two simple remedies to this problem

are given in Section VI.

The agreement between the theory and the experimental

data is fairly good except at very low values of VSWR.
This discrepancy cannot be accounted for by measurement

errors and is especially noticeable in the full- to one-

quarter-height design. As can be seen in Fig. 6, the only

higher order TE mode able to propagate in any portion of

the transition is the TE20 mode which, being asymmetrical,

should not be excited in this structure. Although the mag-

nitude of the reflection coefficient is particularly sensitive

to the value of kc, an error in this variable would show up

at all frequencies and not simply when the VSWR is low.

The calculation of Cd, the discontinuity capacitance associ-

ated with the edge of the channel (see Appendix A), takes

into account proximity effects when the channel width is

small but not when it approaches the outer dimensions of
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a bulgy transformer, discussed in Section VI.

the guide (s= a). It was found that an increase in the value

of Cd in the region where s is close to a will have a

noticeable effect on the VSWR wherever the reflection

coefficient is small. The effect is to bring the measured and

predicted performance into closer agreement.

Because of the observed discrepancies between the the-

ory and measurements for small values of VSWR, the

design curves given in the next section must be used with a

degree of caution. Clearly, if one does not deviate signifi-

cantly from the three prototypes in this section the theory

will adequately predict the transformer performance. For

transformer ratios and taper angles which are substantially

different, the design curves in Section V should; not be

relied on to give precise VSWR values below 1.1. For

general use, however, the curves should enable the designer

to select an easily fabricated transformer to meet his needs.

V. DESIGN CURVES

The algorithm described in Section III and Appendix A

was used to analyze two different types of channel wave-

guide transformer. Those of the first type have circular-

arc-shaped tapers which could be produced with slitting

saws of various diameters, while those of the second type

have linear tapers with various half angles. The former

design is somewhat easier to fabricate at millimeter wave-

lengths, whereas the latter configuration is more suitable

for use at lower frequencies where the required slitting saw

diameters would be prohibitively large. Transformers with

input to output height ratios of 2, 3, and 4 were examined,

In every case the taper was divided into 50 cross sections

for the analysis. Increasing this number had no significant

effect on the results.

Plots of the predicted VSWR versus normalized

frequency for the transformers with the circular-arc-shaped

tapers are shown in Figs. 7–9. The three curves represent

transformers whose lengths are 1.5, 2, and 2.5 times the

guide wavelength in standard rectangular waveguide at the
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Fig. 11. Predicted VSWR versus normalized frequency for three full- to

one-third-height transformers with linear tapers. The taper hatf-angles

are chosen to give transition lengths identical to those of Figs. 7– 10. All
other conditions are the same as in Figs. 7– 10.

Fig. 14, Predicted values of the normalized wavenumber versus position

along the length of the transition for the three linearly tapered trans-
formers of Figs. 10-12. The same conditions apply as in Fig. 13.

‘~
FULL TO 1/4 HEIGHT TRANSFORMERS

those of the circular-arc-shaped transformers in Figs. 7–9,

The expected rise in the wavenumber as a function of

position along the taper is plotted in Figs. 13 and 14 for

both sets of transformers.

The overall performance of the transformers with linear

tapered transitions is slightly better than those with cir-

cular-arc-shaped profiles. Transformers of large input to
output height ratios do not perform well at the low end of

their waveguide bands regardless of their length. Fairly

good performance can be expected, however, if one oper-

ates far enough above the maximum cutoff frequency in

the transition. In the next section, methods of increasing

the bandwidth of the transformers are described which

lead to designs having useful performance over the full

waveguide band.
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Fig. 12 Predicted VSWR versus normalized frequency for three full- to

one-quarter-height transformers with linear tapers. All other conditions
are identical to those of Figs. 10 and 11.

VI. BROAD-BAND TRANSFORMERS

center of the band. The design data for transformers with

linear tapers are given in Figs. 10– 12, where the predicted

VSWR for transitions with different half-angles are shown.

The half-angles are chosen to yield taper lengths equal to

Two approaches for improving the low-frequency perfor-

mance of channel waveguide transformers were investi-

gated. The first is to use two transformers with low height

ratios in series to achieve the desired overall ratio. It is
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clear from Figs. 13 and 14 that the cutoff frequency of a

channel waveguide transformer is related to the input and

output waveguide heights. Two transformers of low height

ratio in series should have a lower VSWR than a single

high-ratio transition.

A second way of improving the low-frequency perfor-

mance is to vary the waveguide width along the transform-

er, which can be done without significantly complicating

the fabrication procedure. This approach is suggested by

the observation, based on Figs. 13 and 14, that the cutoff

frequency of a channel waveguide transformer is governed

by the dimensions of the cross section with the highest

value of kC/kCO, which occurs when sla = 0.55.

A. Two-Stage Transformers

The analysis of a transformer from full- to half-height in

series with a half- to quarter-height transformer indicates a

substantial improvement in performance across the wave-

guide band. The maximum cutoff frequency in the transi-

tion is reduced to that of the full- to half-height trans-

former design, Measurements on a transformer of this type

in WR- 10 (75 – 110 GHz) waveguide confirmed the theoret-

ical results.

The approach could be extended to produce a trans-

former with many steps in height. If the individual tapers

were to overlap, the resulting structure could be analyzed

using the same method as in Appendix A. No design

curves are offered here because of the large number of free

parameters.

B. Bulgv Transformers

To make a channel waveguide transformer with in-

creased width near the middle of its length, the same setup

and cutting tool can be used as for the unmodified design.

Upon completing the reduced height waveguide section (as

in Fig. 1(a)) one simply moves the slitting saw to the center

of what is to be the transition region, and plunges down-

wards, producing a circular-arc-shaped bulge in the narrow

wall of the guide. The length of the bulge is determined by

the slitting saw radius R and the depth of the cut according

to LB = (2hR – h2)1/2 where h is the depth at the midpoint

of the bulge.

Figs. 15 and 16 show the results of the theoretical

analysis on a group of full- to one-quarter-height bulgy

channel waveguide transformers in which the bulges extend

the full length of the transition. The transformer lengths

correspond to those of Figs. 7– 12 and the bulge depths,

fixed by the slitting saw radii, increase the reduced height

waveguide width by -25 percent at the midpoint of the

transition.

Figs. 17 and 18 show the normalized wavenumber along

the longitudinal axis of the transformers. The maxima have
‘ been reduced significantly compared with the correspond-

ing bulgeless transformers of Figs. 13 and 14. The analysis

indicates that transformers with circular-arc-shaped tapers

will perform better than those with linear tapers when a

bulge is added to the width of the reduced height section.

Using this design, it is possible to reduce the VSWR to less

than 1.2 over the full waveguide band.
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Fig. 15. Predicted VSWR versus normalized frequency for three full- to
one-quarter-height bulgy transformers with circular-arc-shaped tapers.
Each curve corresponds to one of the transformers in Fig. 9, modified
with a bulge in the width of the reduced height waveguide. The bulges

are made with the same stitting saw used to produce the rest of the
transformer and extend the full length of the transition. The reduced
height waveguide width is increased by a maximum of -25 percent at

the midpoint of the taper.
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Fig. 16. Predicted VSWR versus normalized frequency for three futl- to
one-quarter-height butgy transformers with linear tapers. Each curve
corresponds to one of those in Fig. 12. All other conditions are the

same as in Fig. 15.
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Fig. 17. Predicted normalized cutoff wavenumber versus position along
the transition for three bulgy circular-arc-shaped transformers with

different height ratios. The cutoff wavenumber is normalized to that in
the rectangular guide at the start of the taper ( kco = 2 n/4a) where the
width-to-height ratio (a/b) is 2:1. The curves should be compared to

the corresponding bulgeless designs of Fig. 13.
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VII. CONCLUSIONS

A. Summary

A new type of easily fabricated H-plane waveguide

transformer has been described. The results of a theoretical

analysis of the structure agree fairly well with measure-

1 Widlh/height (o/b) = 2 I ments made on X-band transformers with intmt to outtmt

0,8~
0.0 0. I 0.2 10

Z/L [POSITION ALONG LENGTH OF TRANSFORMER)

Fig. 18. Predicted values of the normalized cutoff wavenumber versus

position along the transition for three linearly tapered, bulgy trans-

formers with different height ratios. The same conditions apply as those

of Fig. 17. These curves should be compared to the corresponding

bulgeless designs in Fig. 14.
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Fig. 19. Measured and predicted VSWR versus frequency for a full- to

one-quarter-height bulgy transformer at X-band. The transformer is the
same as that shown in Fig. 4 with the addition of a bulge in the reduced

height waveguide which extends over the full length of the taper. The

bulge was made with a rotary milling head, whose effective cutting
radius was 5 in, and increases the width of the guide by 37 percent at
the midpoint of the transformer. The taper hrdf-angle of the linear

transition is 10 degrees, yielding a transformer length of 6.482 cm. Note
that at the high-frequency end of the band the TE30 mode can propa-

gate in part of this transition (see Fig. 6). The error bars reflect the
mismatch uncertainties of the sliding load.

To check the accuracy of the analysis of the bulgy

transformer a bulge was made in the full- to one-quarter-
height X-band channel waveguide transformer described in

Section IV. The bulge increased the waveguide width by 37

percent at the maximum and extended over the full length

of the taper. The measured and predicted performance are

compared in Fig. 19.

The difference between the experimental and theoretical

curves here is greater than in the nonbulgy cases. This may

be due to the fact that coupling between the fundamental

and higher order evanescent modes, especially the TE30

mode (see Fig. 6), from one section of the taper to the next,

ignored in the analysis, has a greater affect in the bulgy

transformers. It is clear, nonetheless, that the addition of a

bulge to the transformer results in a significant improve-

ment in low-frequency performance.

height ratios of 2, 3, and 4. Two basic versio~s of the ~ew

design were analyzed and the results presented graphically.

The analysis indicates that in its simplest form the trans-

former is not usable at the lower end of its waveguide band

when the height ratio is large. For high-ratio transitions, a

two-stage transformer gives better results. The bandwidth

of the single-stage transformer can be increased to cover

the full waveguide band by increasing the width of the

reduced height waveguide in the tapered region. Analysis

indicates that the performance of transitions with high

impedance ratios could be improved dramatically with

only a small increase in waveguide width. Using the same

slitting saw to form the reduced height waveguide, the

transition section, and the bulge in the width, no additional

complication is added to the fabrication process. Measure-

ments of the VSWR of a bulgy full- to one-quarter-height

transformer at X-band confirmed the predictions of the

computer analysis although agreement with theoretical re-

sults was not as close as it was for the unmodified trans-

formers.

B. Approximations in the Analysis

The design curves given here should be sufficient in most

cases to achieve transformers with a VSWR <1.2 over a

full waveguide band. However it is important to ask why

the measured and computed results showed consistent dis-

crepancies at low VSWRS, and in the case of the bulgy

transformer, why the low-frequency results were not in

closer agreement. As mentioned in Section VI-B, the as-

sumption that there is no coupling between the fundamen-

tal and higher order evanescent modes in the transition is a

possible source of error.

The somewhat arbitrary choice of the voltage and cur-

rent variables used to define the characteristic impedance

of the channel waveguide, discussed in Section III-A, is

justified only in that it gives good agreement between

theory and experiment. The same definition was used by

[7] and [17] in their analyses of ridged waveguides.
The approximations inherent in the transverse resonance

and characteristic impedance methods lead to errors whose

magnitudes are difficult to estimate. These uncertainties

might be circumvented if a finite difference technique [13]

for determining the fields in the transformer were com-

bined with the complete mode coupling theory of Solymar

[10].

C. Applications

The channel waveguide transformer is particularly suit-

able for use at millimeter wavelengths where the fabrica-

tion of conventional step and tapered transformers is dif-

ficult and expensive. The transformer can be formed in a

split-block waveguide structure using a single setup on a
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milling machine. The block is split in the E-plane which

haszero transverse current, andhence poor contact along

the joint line will cause no loss.

The authors have successfully used the full- to one-half-

height channel waveguide transformer with a circular-arc-

shaped taper in two solid-state frequency multipliers, with

their outputs in WR-5 and WR-8 waveguide. The equiva-

lent full- to one-quarter-height design has been used in a

mixer at 115 GHz. Fabrication time for these devices was

reduced dramatically by employing the new transformer.

The design is also useful as a transition from the crossed or

channel waveguide [1 ]–[4] to conventional rectangular

waveguide.

APPENDIX A

TRANSVERSE RESONANCE SOLUTION FOR /cc,O AND

THE DETERMINATION OF 2,,0

A. Cutoff Waoenumbers by T?ansuerse Resonance

The method of transverse resonance [14] was applied by

Cohn [7] to calculate the TE~O-mode wavenumbers of

ridged waveguide. It was later used by Vilmur and Ishii [1]

“E!EF?-
LxHTi’”?%+,

Fig. 20. A cross-sectionaf view of the channel waveguide with the equiv-

alent circuit used to derive the wavenumbers by the transverse reso-
nance method of Appendix A. For the wave equation solutions

described in Appendix B, the cross section is divided into the two
regions indicated in the figure and the fields in each are expanded as

series of orthogonal functions. The finaf solutions are determined after
the application of the boundary conditions, which require matching of
the tangential fields at the line dividing regions 1 and 2.

TABLE I

COMPARISON OF METHODS USED IN APPENDICES A AND B ON THE
FULL- TO ONE-QUARTER-HEIGHT TRANSFORMER OF FIG. 4

l-~tan(kC,Os)tan (kc, O(a-s)) values of a, by Whinnery and Jamieson [16, fig. 15]. When

the channel height 2b approaches a half wavelength, the

–dkC,O~tan(kC,O(a –s)) =0. (Al) value of Cd must be increased. The effect is small, <10

This equation has the same form as that derived by Pyle percent for operation in the standard waveguide band, but

[15] for ridged waveguide when the following identifica- can be incorporated into (A3) by multiplying Cd by a

tions are made: correction factor given in Whinnery and Jamieson [16, Fig.

()
z,= E “2!? 16].

c 1 A computer program was written to solve the transcen-

()

dental equation (A 1) iteratively for the lowest order root.
Z2= k “*G

c 1 The resulting values of kC,O for 10 positions along the

d
length of a full- to one-quarter-height transformer in X-

~=—
b

band waveguide are listed in Table I.

0,= kC,Os B. Characteristic Impedance

@2=kC,0(a–s) As discussed in Section III-A, the characteristic imped-

kC,OCJ
rtnce in the channel waveguide is not unique. Cohn [7] and

.—

‘- (pc)’/2 “

(A2) Mihran [17] defined a characteristic impedance in ridged
waveguide using the transverse voltage at the center of the

Cd is a discontinuity capacitance which accounts for the guide divided by the total longitudinal current on the top

generation of higher order modes at the edge of the chan- face. We have found that this definition, when applied to

nel. Whinnery and Jamieson [16] approximated ed to a the channel waveguide transformer, gives acceptable agree-

high degree of accuracy by ment with experiment.

cd
[ –Cosh-’(+%”’++d

In a manner analogous to that of Mihran [17] we obtain
_=G ~ az+l for the channel waveguide
c ITa

(A3) “’v

The multiplier G is a proximity effect term which decreases =
Lw

the value of Cd when the channel width becomes small $Cos(kc,”s)++

(s/a = O) and the discontinuities can no longer be consid-
[
sin(~.,,~)+ ~COS k s tan

C1O

( .,O ) (>(a-~))]

ered as being isolated from one another. It is given, for two (A4)
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where

()
J+ i/7-

ZW=*= c
P

[01

f
2 1/2

1– ~
f

(A5)

is the TE-mode wave impedance. The equation has the

same form as Mihran’s equation (2). Note that Cd contains

a frequency dependent term which should be included in

the solution of (A4).

APPENDIX B

WAVE EQUATION SOLUTION FOR kC,OAND THE

DETERMINATION OF ZCIO

A. Cutoff Wavenumbers from the Wave Equation

The field relations derived by Tham [3] for the channel

waveguide are given in (A6)–(A 14). The unnormalized

expressions for the TE,0 magnetic fields at any cross

section along the length of the channel waveguide trans-

former are (referring to Fig. 20)

%=,=O;’,,,@Ircosh(Pl(;-+]cos[;(~-Y))
,,!

(A6)

and

HZ, = ~ @2msinh(pzm~)cos( ~(b-~)]
~ = 0,2,4,...

(A7)

where @, and @2mare complex constants. Alsor

and

()
2

p~~ = –4k&a2 + ~ .

(A8)

(A9)

Subscript 1 refers to the region s < x <a, 0< y < d and

subscript 2 refers to the region O < x <s, O < y < b. The

eigenvalue equation which must be solved to find the

wavenumbers kc,0 is

: ~ @2tia~~ = O. (A1O)
n =0,2,4,.. WI =0,2,4...

This has a solution if

det[a]=O. (All)

a . ~ is given by

tanh(p,m~)]
(A12)

where

cmn=:~dcos(~(~-Y)) cos(~(b-Y))~Y-

(A13)

O ,m and Q2M are related by

“m=A.cosh(p:(+-+))

~ @2HC~,sinh(p2n&) (A14)
n = 0,2,4,...

where

A~=2ifm=0

= 1 otherwise,

A computer program was written to solve (A6)-(A14)

for kC,O and ~z,,. It was found that the infinite sums could

be truncated to the first three terms without appreciable

loss of accuracy. The solutions to (Al 1) provide all the

TE ~~~ ~ve~-mode wavenumbers, but only the lowest nonzero

value ‘is required for calculating kCIO. An initial guess for

kC,O is taken to be the TEIO rectangular guide wavenumber;

(A8), (A9), and (Al 3) are calculated; the matrix terms in

(A12) are formed; and (Al 1) is solved using the IBM SSP

program MINV. There is no effect on the solution of (Al 1)

if a~~ in (A 12) is divided through by the sinh term outside

the brackets. The terms in the matrix will then all be real,

since p, and p2 are always pure real or pure imaginary, and

the evaluation of the determinant is considerably faster. If

the solution of (Al 1) is greater than a specified limit, then

kC,O is incremented, a is reformed, and the determinant

reevaluated. Following the suggestion in [4], if a sign

change occurs in the value of the determinant, then the

increment for kc,, is halved and its sign is reversed. Usually

kc,o converges to 8 decimal places within 40 iterations when

a 3 X 3 matrix is used. When more than five terms are used

in the series in (A6)–(A 14) the solution of (A 11) becomes a

very sensitive function of /cC,O and the eigenvectors in (A1O)

are then difficult to determine accurately. In Table I, the

values of kc,o as found from (A 11 ) are compared with those

obtained from the solution by the transverse resonance

method ((A 1)) for ten values of the channel width. Results

are shown with the series truncated at 3 and 7 terms. The

two methods agree to within 0.5 percent.

Once the values of kC,Oat each cross section have been

determined, they are used in (A 10) to find the values of the

TE1o-mode eigenvectors. The IBM SSP program MFGR

can be used for this purpose since a is now a real matrix.

The rank of a is always the number of rows – 1, and

therefore the eigenvectors for the terms n >0 are expressed

as multiples of the rI = O term. This causes no difficulty in

determining the characteristic impedance since the arbi-

trary constant divides out. The sinh factor taken out of

(A12) must now be replaced to obtain the desired
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eigenvectors. If required, a value for the arbitrary constant

can be established by normalizing the transverse fields in

some way, usually so that the power flow at each, cross

section is unity. When the @zm’shave been determined, the

O1,’s can be found from (A14). Substitution into (A6)--.(A7)

then gives the expressions for the longitudinal field compo-

nents in the two regions of the channel waveguide cross

section. Similar expressions can be obtained using the

Ritz-Galerkin method as in [4] or by breaking the cross

section along the y = d line rather than along x =s.

B. Characteristic Impedance

The characteristic impedance is derived from the equiva-

lent voltage and current as discussed in Appendix A. The

maximum transverse voltage at the center of the channel is

determined by integrating the electric field, EY a dHz/8x,

from – b to b (by symmetry EX = O.along this line). The

total longitudinal current along the upper half (y> O) of

the channel waveguide is then found by integrating the

transverse magnetic field along the walls, and ZC is calcu-

lated by dividing V by I.

The steps leading to the calculation of ZC are as follows:

Zc= v/I (A15)

with

V= – /E, sdll = transverse voltage (A16)

and

1 = ~Ht. dlz = longitudinal current. (A17)

El and-H, are transverse field vectors in the waveguide.

They are related to the TEIO orthogonal mode vector

functions by

E, - VIOe10 (A18)

H,= I,olz,o (A19)

where e,0 and h lo are derived from the transverse scalar

wave equation

The transverse fields in (A18) and (A19) can be ex-

pressed in terms of Hz using’ Maxwell’s equations

E,= Vloe,o = Vlo(eloxf + eIOy $)

q = I, OIZIO=l,.(– cloy-f+elOx~)
,.

‘+:)’’2+(%’++) (A26)k:,,

The transverse voltage at the center of the channel wave-

guide is found from

()
p1/2

J
–j2k0 ;

V=–2 bE,, dy=
b ~Hz2

o k:,, J( )o %- ‘y

(A27)

where H,, is obtained from (A6).

The total longitudinal current along the upper half of the

channel waveguide is given by

[
I= 2 ~sH,, dx + /“H,, dx + ~bH,, dy + ~dHt, dy

o s 1
(A28)

Substituting for Hz, and Hz, from (A6) and (A7) and

carrying out the integrations we obtain

z.=:

zw@20p20;

V:*10 + k:,OT1o = O (A20)

using

elo = 2 x Vt’llo (A21)

and

hlO=i Xelo (A22)

with

LIelo. e~Od4=l. (A23)

The longitudinal fields in (A6) and (A7) are related to Tlo

by

V1ok;,OVIO
Hz=

()

p 1/2
jko ;

(A24)

where kc,O is the wavenumber in the guide at cutoff and k.

is the wavenumber in free-space.

—

~=o?..{@@4flkJ
+@:.[{-cosh(p.(*-+))1

( .2a)[1-cOs(~(b-d))]– @2~sinh p2 A

‘@,.(l-cOs(?)))’
(A30)

where ZW = Vlo /110 = tip/~ is the wave impedance for TE

modes. ZC is real and positive abo~e cutoff.

In Table I, the value of ZC at infinite frequency (before

multiplying through by ZW), as determined from (A30), is

compared with the value obtained from (A4). The results

agree to within -5.0 percent.
As discussed in Section III-B, the field expressions in

(A6)-(A7) converge very slowly in the region near the start

of the channel. If we plot the x and y components of the
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transverse electric field along the line x =s, we see (Fig. 3)

that the truncated series expressions are a poor approxima-

tion to the actual fields. The tangential fields in regions 1

and 2 of Fig. 2 should be identical along the line y = O to d,

and for larger y values EY in region 2 must go to zero. At

the corner x =s, y = d, both field components should

become infinite.

Fortunately, the determination of the characteristic im-

pedance is most strongly dependent on’ the fields along

y = d and y = b and is not affected greatly by the integral

along the side wall of the channel. The same statement

cannot be made for the calculation of the terms in the

mode coupling theory discussed in Section III-B.

ACKNOWLEDGMENT

The authors would like to thank Dr. L. Solymar for

some useful references, Dr. P. J. Khan for his helpful

discussion, and E. Michaud for her preparation of the

manuscript.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[lo]

[11]

[12]

[13]

[14]

[15]

RBFEMNCES

R. J. Vilmur and K. Ishii, “The channel waveguide,” IRE Trans.

Microwave Theory Tech., vol. MTT-10, pp. 220-221, May 1962.

N. A. Kuz’min and T. V. Makai=ov, “Electromagnetic waves in a

rectangular cross-shaped waveguide,” Radio Eng. Electron. Phys.,
vol. 6, pp. 1781–89, Dec. 1961.

Q. C. Tham, “Modes and cutoff frequencies of crossed rectangular
waveguides,” IEEE Trans. Microwave Theory Tech., vol. M’IT-25,

pp. 585-588, hdy 1977.
F. L. C. Lin, “ Modaf characteristics of crossed rectangular wave-
guides,” IEEE Trans. Microwave Theory Tech., vol. M-TT-25, pp.
756–763, Sept. 197’7.
R. C. Johrt~on, “Design of linear double tapers in rectangular
waveguides,” IRE Trans. Microwave Theoiy Tech., vol. MTT-7, pp.

374-378, July 1959.

S. A. Schelkunoff, “Impedance concept in wave guides,” Quart. .J.
Appl. Math., vol. II, no. 1, pp. 1-15, Apr. 1944.

S. B. Cohn, “ Properties of ridge waveguide,” Proc. IRE, vol. 35, pp.

783-788, Au% 1947.

S. A. Schelk&off, “Conversion of Maxwell’s equations into gener-
alized Telegraphist’s equations,” Bell SysL Tech. J., vol. 34, pp.
995-1043, Sept. 1955.
G. Reiter, “Generalized Telegraphist’s equation for waveguides of

V-W cross section,” Pr’oc. Inst. Elec. l%., Part B, vol. 106, SUP.
no. 13, pp. 54–57, Sept. 1959.
L. Solymar, “Spurious mode generation in nonuniform wavegnide~’
IRE Trans. Microwave Theory Tech., vol. MTT-7, pp. 379-383, July

1959.

B. Z, Katzenelenbaum, “On the theory of nonuniform wavegnides
with slowly changing parameters,” presented at Congr. Int. Circuits

Arttennes Hyperfrequences; afso in Suppl. Onde Elec., no. 376, pp.
124-127, Aug. 1958.

J. P. Montgomery, “On the complete eigenvahre solution of ridged
waveguide,” IEEE Trans. Microwave Theory Tech., MT’1- 19, pp.
547-555, June 1971.
S. S. Saad, J. B. Daties, and O. J. Davies, “Computer analysis of
graduafly tapered waveguide with arbitrary cross sections,” IEEE
Trans. Microwave Theory Tech., M~-25, pp. 437–440, May 197’7.
S. Ramo and J. R. Whinneq, Fields and Waves in Modern Radio.
New York, NY: Wiley, 1944.
J. R. Pyle, “The cutoff wavelength of the TE lo mode in ridged

rectangular waveguide of any aspect ratio,” IEEE Trans. Microwave

Theo~ Tech., MIT-14, pp. 175-183, Apr. 1966.

[16] J. R. Whinnery and H. W. Jamieson, “Equivalent circuits for

discontittuities in transmission lines;’ Proc. IRE, vol. 32, pp. 98-114,
Feb. 1944.

[17] T. G. Miftran, ” Closed- and open-ridge waveguidefl Proc. IRE, vol.

37, pp. 640-644, June 1949.

[18] F. Sporleder and H. G. Unger, Waoeguide Tapers Transitions and

Couplers. Stevenage, U. K.: Peter Peregrinus, Ltd., 1979.

[19] D. J. Leonard and J. L. Yen, “Junction of smooth flared wave
guides:’ J. Appl. Phys., vol. 28, no. 12, pp. 1441– 1448, Dec. 1957.

*

Peter H. Siegel (S’78) was born in New Rochelle,

NY, in 1954. He received the B.A. degree in

physics from Colgate University in 1976 and an
M.S. in electrical engineering from Columbia

University in 1978. He is currently completing
work on his doctoraf thesis at Columbia Univer-
sity on the optimization of miflimeter-wavelength

mixers.

Since 1975 he has been a Research Assistant at
the NASA Goddard Institute for Space Studies
where he has been doing research on millimeter-

wave mixers, frequency multipliers, quasi-opticaf structures, and wave-

guide components. His other interests include computer-aided design and

submillimeter-wave receivers.

*

Doro W. Peterson (M79) was born in Fargo,
ND, in 1947. He received the B.S. degree in

physics from Michigan State University in 1969,
and the Ph.D. degree from the University of
California, Berkeley, in 1978. His thesis was based
on experimental and theoretical work concerning

Josephson junction parametric amplifiers.

From 1979 to 1981 he was a Nationaf Re-

search Council Associate at the Goddard In-

stitute for Space Studies where he worked on

quasi-optical mixers and Josephson point contact

mixers. Since 1981 he has been with Columbia University where he has

been working on’ Schottky barrier mixers for millimeter-wave receivers.

*

Anthony R. Kerr (S’64-A’66-SM78) was born in
England on August 30, 1941. He received the

B. E., M. Eng.Sc., and Ph.D. degrees from the

University of Melbourne, Austrafia, in 1964, 1967,

and 1969, respectively.

In 1969 he joined the Commonwealth Scien-

tific and Industrial Research Organization, Syd-
ney, Australia, to develop low-noise receivers for
radio astronomy. From 1971 to 1974 he worked

on low-noise cryogenic receivers for millimeter-
wave astronomy with the National Radio Astron-

omy Observatory, Charlottesville, VA-. He is now with the NASA/
Goddard Institute for Space Studies, New York, NY, developing low-noise
receivers for millimeter and submillimeter wavelengths.

Dr. Kerr is a member of URSI Commission J and the Astronomical

Society of Austrafia. He was corecipient of the 1978 Microwave Prize.


